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Abstract--The need to develop accurate models for

secondary statistics of fading land mobile satellite signals

has motivated a study of fading signal autocorrelations and

multipath spectrum. Results of autocorrelations and power

spectral densities from measured data are presented and

comparisons to multipath spectrum models are made.

i. Background

Previously we have reported on the development of a

software propagation simulator used to simulate fading of

Land Mobile Satellite System (LMSS) signals for arbitrary

propagation conditions (Stutzman, et al., 1988; Barts and

Stutzman, 1988). The simulator generates signals using two

data bases of signal components derived from experimental

data.

The measures of performance used to evaluate the

simulator are its ability to reproduce the primary fading

statistics, cumulative fade distribution, and secondary (or

conditional) fade statistics, average fade duration and level

crossing rates, of experimental data. Previously reported

results (Barts and Stutzman, 1988) have shown that the

simulator reproduces primary fade statistics for a wide

variety of experimentally measured propagation conditions.

However, the simulator results for secondary statistics are

not satisfactory.

The simulator is constructed to produce accurate primary

statistics, but has no inherent model for secondary

statistics. The secondary statistical behavior of the

simulator is determined by the secondary statistical behavior

of the data bases used to construct the simulated signal.

Thus, it is important that we correctly process the

experimental data when generating the simulator data bases to

extract both the correct primary and secondary statistical

behavior. However, the processing techniques in use only

assure us of extracting primary statistics correctly.

The need for secondary statistics modeling capability

led us to a review of the data processing used to generate
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the simulator data bases and a study of models for secondary

statistics. We began these studies by looking at the dynamic

fading signal behavior as represented by the signal

autocorrelation. These were used as a stepping stone for

examining the spectra of fading signals and comparing them

with various multipath models. With these models we are

attempting to develop models for the secondary statistics,

for which no satisfactory models currently exist. Our

approach is based on the modeling of Jakes (1974) wherein if

we can establish an appropriate model for the multipath

spectrum, we can derive analytical expressions for the

secondary statistics.

2. Autocorrelation Studies

The autocorrelation of a signal is a measure of how fast

the signal changes with time. We can also consider it a

rough measure of the duration of a scatterer's influence upon

a fading signal. The broader the autocorrelation function,

the slower the signal fades and the longer the period of time

an individual scatterer dominates the received signal.

The autocorrelation function is defined as

RZZ(T ) = < z(t-T)z*(t) > (1)

where z(t) = x(t) + j y(t) is a complex signal.

of (i) more suitable for evaluation is

A form

RZZ(T ) = Rxx(T) + Ryy(T) -- j[ Rxy(T ) - Ryx(T ) ] (2)

where Rvv(T) and R ....(T) are the autocorrelations of the real

and imaginary components of the complex signal, respectively.

Rxv(_ ) and Rvx(_ ) are cross correlation between the real and

imaginary si_hal components. We have found that for the

experimental data we have that these cross correlations are

usually approximately equal resulting in a real

autocorrelation function, but this is not always the case, as

discussed below.

The autocorrelation as defined in (i) is the expected

value of z(t--T)z*(t). When we calculate the autocorrelation

of a 1.024-second record of data, we are calculating the

autocorrelation of but a single realization of a stochastic

process. If we consider consecutive 1.024-second records of

experimental data to be multiple realizations of the same

process, we can average the resulting autocorrelations to

find the expected value function. This is the technique we

have used to analyze experimental data. This is also useful

for calculating power spectral densities, as discussed below.

Figure 1 is an example of an autocorrelation of balloon data
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collected by Vogel (1985). Notice that the real part of the

autocorrelation is smooth and slowly varying. This is

indicative of signal data that is relatively smooth and does

not have rapid fading. Figure 2 shows the signal data from

which the autocorrelation function of Figure 1 was derived.

Notice that, indeed, the signal data are relatively smooth and

free of rapid fading. This is due in part to the slow

vehicle speed (8 mph) during data collection, but the data

also suggests a scarcity of scatterers or shadowing. Notice

that the imaginary component of the autocorrelation in Figure

i, while small0is not negligible. This indicates a

correlation between the real and imaginary signal components

that is unexplained.

Figure 3 is an example autocorrelation for helicopter data

collected by Vogel and Goldhirsh (1988). Figure 4 is the

corresponding signal data. Notice that the helicopter

autocorrelation function falls off more rapidly and is not

smoothly varying. This is indicative of rapid fading and

Figure 4 confirms this. The imaginary part of the

autocorrelation function for the helicopter data is very

small and can be considered negligible.

These examples were taken from single 1.024-second records of

data, but the are indicative of the results using averaging.

Data from Vogel and Goldhirsh's measurements with the MARECS-

B2 satellite (Vogel and Goldhirsh, 1988) have also been

analyzed (not included here for the sake of brevity) and are

very similar to the helicopter data, which is expected since

the two measurements were taken in the same geographical

area.

These results give us some insight into processing the

experimental data to create the databases used in the

propagation simulator. To create the "lognormal" data base,

the lognormal component of the signal is estimated by using a

running average window. The size of the window was chosen

empirically. When dealing with data that are markedly

different, such as balloon and helicopter data, empirically

choosing the window size is not an optimum technique. By

examining the autocorrelation of the signal, we can make an

informed judgement about the window size.

3. Power Spectrum Studies of Fading Signals

The fading signal power spectrum is related to the

autocorrelation of the signal by a Fourier transform. Using

the autocorrelation of the signal to obtain the power

spectral density (psd) of a signal has several advantages

over using a direct FFT of the signal data. When dealing

with a signal in the presence of noise, the autocorrelation
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calculation acts as a noise filter, since Gaussian noise is
decorrelated. This is particularly helpful when dealing with
fading signals which are noisy. The resulting signal psd is
not as corrupted as those from a direct FFT. Secondly, it is
computationally easier to average the psds of multiple data
records by averaging the record autocorrelations. By
averaging the psds of multiple records, the important
structures of the multipath spectrum become more clearly
defined. Using this technique we calculated the multipath

spectra for th_ experimental data from the balloon,

helicopter, and satellite measurements. These spectra are

used to develop and verify models for the multipath spectrum.

They are also being used to design the filters for the data

processing used in the propagation simulator.

Figure 5 is a spectrum average from I0 seconds of

balloon data. The carrier is obvious at the edge of the

graph and the multipath spectrum cuts off rather sharply at

approximately 80 Hz. This was somewhat surprizing, since the

vehicle speed during these measurements was approximately 8

mph. This spectrum taken alone suggests then that the

velocity of the balloon was approximately 60 mph. The spike

at the edge of the multipath spectrum is an important feature

because it is predicted by the Jakes multipath model, which
is discussed below.

Figure 6 is a spectrum average from i0 seconds of

MARECS data. In this spectrum the multipath does not have a
well defined cutoff. Notice also that the carrier-to-

multipath ratio is much smaller than in the helicopter data.

This is indicative of a larger number of scatterers in the

propagation environment.

3.1 Multipath Spectrum Models

The purpose of the spectrum studies discussed above was

to provide a basis for choosing a model of the multipath

spectrum that could be used in developing a model for

secondary statistics. The simplest and most commonly used

multipath spectrum model employs an assumption of scattered

waves uniformly spatially distributed around the vehicle.

This is the Jakes model (Jakes, 1974). The theoretical

spectrum for this model is shown in Figure 7. It has a width

of 2f_ where f_ is the maximum doppler frequency. Notice the
ILL o IL! ,

asymptotlc behavlor of the spectrum at the edges. The

behavior of the balloon spectrum shown in Figure 5

corresponds closely to this model.

The MARECS spectrum of Figure 6 looks very different

from the Jakes multipath model. This could be due to

assumptions upon which the Jakes multipath model is based.
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The model assumes that the scatterers are in the far field of
the vehicle, and that the scattered fields are plane waves.
This would not be true for roadside tree scatterers.
Secondly, the Jakes model assumes a uniform spatial
distribution for the scattered signal. This produces the
asymptotes at the edges of the multipath spectrum, which are
products of the scattered signals directly in front of and
behind the vehicle. But/in reality, points directly in front
of and behind the vehicle are relatively clear of scatterers.
The assumption that the scattering from in front of and
behind the vehicle is the same as the scattering from the
sides is referred to as the "brick wall" fallacy.

Recent work by Campbell has produced a multipath

spectrum model that agrees more closely with the result shown

in Figure 6. Campbell has simulated a large number of random

scatterers along the side of the road in the near field of

the vehicle. Figure 8 is an example of the multipath

spectrum predicted by Campbell's simulation. While this

model still has a well defined cutoff, it is closer to the

helicopter and MARECS spectra we observed than the Jakes

model.

4. Conclusions

Our recent efforts in modeling and simulation of fading

LMSS signals have concentrated on understanding the spectrum

of the fading signals. In our effort we are have examined

the autocorrelation of the signal as well as the signal power

spectral density. In order to improve the signal processing

used in the propagation simulator, we need to look at both

the signal autocorrelation and power spectral density. These

will allow us to make informed decisions on how to design

filters used to extract the signal components.

Our study of multipath spectra is a step toward finding

appropriate analytical models for the secondary fading

statistics. The spectra from experimental data shown here

have been compared to two different multipath spectrum

models. The results indicate that the Jakes multipath model

may be appropriate for slow, shallow fading, such as observed

in the balloon measurements. Where there is rapid, deep

fading and scatterers are in close proximity of the vehicle,

the multipath spectrum produced by Campbell's simulation may

be appropriate, as indicated by the helicopter and MARECS
measurements.
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Figure i. Autocorrelation of

data from Vogel's balloon
measurements.
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Figure 2. Signal data from

Vogel's balloon measurements.
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Figure 3. Autocorrelation of

data from Vogel and Goldhirsh's

helicopter measurements.
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Figure 4. Signal data from

Vogel and Goldhirsh's helicopter

measurements.
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Figure 5. Signal spectrum from

balloon data.

Figure 6. Signal spectrum from

MARECS data.
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Figure 7. Multipath spectrum

from Jakes' multipath model.
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Figure 8. Multipath spectrum

from Campbell's simulation.
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